
Users Manual for the Parallel

LS/Breit-Pauli/DARC R-Matrix Programs

Authors :

C P Ballance1 and D C Griffin1

1Department of Physics, Rollins College, Florida, FL 32789 USA

Collaborators :

N R Badnell2

D M Mitnik3

K A Berrington4

2Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
3Departamento de Fsica, FCEN, Universidad de Buenos Aires, and Instituto de

Astronoma y Fsica del Espacio (IAFE), Casilla de Correo 67, Sucursal 28,

(C1428EGA) Buenos Aires, Argentina
4School of Science and Mathematics, Sheffield Hallam University, Sheffield

S1 1WB, UK

Abstract.

This document describes the use of the parallel R-matrix codes developed

by the authors from modified serial versions of the RMATRX1 suite of pro-

grams (Berrington et al 1995 Comput. Phys. Commun. 92 290), the non-

exchange R-matrix programs (Burke et al 1992 Comput. Phys. Commun. 69

76), and the Dirac Atomic R-matrix Code (DARC) (P. H. Norrington 2004

http://www.am.qub.ac.uk/DARC). This description assumes the availability of

a Fortran90 Compiler and MPI, ScaLAPACK, BLAS, and BLACS Libraries. Al-

though these programs will run on a variety of parallel computer platforms, the

examples shown are from calculations performed at the National Energy Research

Scientific Computing Center at Lawrence Berkeley National Laboratory, the Cen-

ter for Computational Sciences at Oak Ridge National Laboratory, and on a 26

processor Opteron computer cluster at Rollins College.

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 2

1. Contents

• History .. pg. 4

• An overview of the codes .. pg. 4

– Parallel LS/Breit-Pauli suite

– Parallel non-exchange suite

– Parallel Dirac Atomic R-matrix Codes (DARC)

– Essential utility codes

• Obtaining the codes ... pg. 8

• Compiling the codes ... pg. 8

• An LS R-matrix with pseudostates example pg. 12

• Breit-Pauli calculations ... pg. 24

– Introduction

– A Breit-Pauli example: Fe14+

• Dirac Atomic R-matrix Codes (DARC) calculations pg. 35

– Introduction

– A DARC example: Fe14+

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 3

• Appendices .. pg. 40

– A. Parallel LS/Breit-Pauli code modifications

– B. Parallel Non-exchange code modifications

– C. Parallel DARC code modifications

– D. Sample files for setting the dimensions in the parallel R-matrix

codes

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 4

2. History

The parallel R-matrix codes described here were developed from modified versions of

the serial RMATRX1 codes [1], the non-exchange R-matrix programs [2] and the Dirac

Atomic R-matrix Code (DARC) [3]. The development of the original serial programs

were primarily due to the efforts of physicists at the Queen’s University of Belfast.

Since then, there have been substantial improvements in the serial versions of these

codes by physicists at Strathclyde University, Rollins College, and members of the

Iron/Opacity/RmaX projects.

From the late nineties onward, a Rollins/Strathclyde/Auburn collaboration began

to develop a fully parallel set of LS/Breit-Pauli (BP) codes with options for the

inclusion of pseudostates. This allowed us to overcome computational bottlenecks

that restricted calculations performed using the serial programs to (N + 1)-electron

Hamiltonian matrices of order 10,000 [4]. We now routinely handle cases with

Hamiltonian matrices of order 30,000 to 40,000 and the largest matrix to date is of

order 50,000. More recently, a program has been added to the DARC suite of codes to

enable it to work with our parallel LS/BP diagonalization and asymptotic programs,

and we have parallelized several of the DARC codes. This enables us to handle much

larger calculations for highly ionized species, where a fully relativistic description in

the inner region is more important.

The primary goal of the current effort has been to provide sets of parallel

excitation/ionization codes, based on the R-matrix method, that can be employed to

make accurate large-scale scattering calculations on a wide variety of atomic systems

from neutral and near neutral species, where coupling of the bound states to the

target continuum is important, to highly ionized species, where relativistic effects

are essential. This is an ongoing project and changes are constantly being made to

improve on both the versatility and efficiency of these programs. Although the codes

are appropriate for a variety of species, the number of states that sometimes must

be included in order to obtain accurate results, especially for neutral or near-neutral

complex atomic systems, can render the calculation impractical, even on the current

generation of massively parallel computers.

3. An overview of the codes

3.1. The LS/Breit-Pauli codes

As with the original serial version of the RMATRX1 package, the parallel version

of the LS/Breit-Pauli (BP) R-matrix package consists of a series of programs

that can be used to perform either LS or BP intermediate-coupling scattering

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 5

calculations. A summary of recent modifications made to these parallel LS/BP codes

is given in Appendix A. The target states may be generated using the programs

AUTOSTRUCTURE, CIV3 or MCHF, but the use of these programs will not be

described here.

• pstg1r.f – reads the bound state radial orbitals from a structure calculation,

generates the orbital basis for the (N + 1)-electron continuum, and calculates all

radial integrals. The calculations of the radial integrals are distributed over the

processors.

• pstg2r.f – carries out the angular algebra calculations in LS coupling and

generates the (N + 1)-electron matrix elements in the LS representation. The

calculations are distributed over the processors by LSΠ partial wave.

• pstg2.5.f – (for a BP calculation only) writes a series of files containing the

(N + 1)-electron matrix elements for all the LSΠ partial waves needed to form

the matrix elements in intermediate coupling for a given range of JΠ. The writing

of the individual files is distributed over the processors.

• precupd.f – (for a BP calculation only) generates term-coupling coefficients for

the N -electron target states and transforms the (N +1)-electron matrix elements

from LS to jK coupling. The calculations are distributed over the processors by

JΠ partial wave. This code is also referred to as pstgjk.f; precupd.f and

pstgjk.f are identical codes.

• pstg3r.f – reads the information from pstg2r.f for an LS run or the information

from precupd.f/pstgjk.f for a BP run, forms the (N + 1)-electron Hamiltonian

matrices, and diagonalizes them to generate the surface amplitudes and R-matrix

poles. The diagonalization of the Hamiltonian matrices is distributed over the

various processors.

• pstgf.f – solves the coupled equations in the external region using perturbative

methods and matches to the R-matrix on the inner-region boundary to generate

collision strengths. The calculation is distributed over processor by electron

energy.

• stglib.f – a set of subroutines called by pstg2r.f and precupd.f

In addition, there is the parallel asymptotic code pstgicf.f. It reads unphysical K-

matrices or S-matrices in LS coupling, generated using the Multi-channel Quantum

Defect Theory (MQDT) options in pstgf.f, transforms them to intermediate coupling,

and uses MQDT to generate collision strengths in intermediate coupling. This program

can be used to calculate excitation cross sections in intermediate coupling for ions in

intermediate stages of ionization that agree well with the results obtained from a full

BP calculation. However, we will not discuss such a calculation in this document.

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 6

3.2. The non-exchange R-matrix codes

The non-exchange R-matrix programs consist of three inner region codes to perform

LS coupling R-matrix calculations without electron exchange. These are especially

useful for determining the contributions from the high partial waves. Of these, only

two stages (pstg2nx.f and pstg3nx.f) have been parallelized. The outer region portion

of a non-exchange calculation is performed using pstgf.f. A summary of recent changes

made to the parallel non-exchange codes is given in Appendix B.

• stg1nx.f – determines the angular coefficients for a non-exchange calculation in

LS coupling. It is very fast and has not been parallelized.

• pstg2nx.f – generates the orbital basis for the (N + 1)-electron continuum,

calculates all non-exchange radial integrals and forms the (N + 1)-electron non-

exchange matrix elements. The calculations are distributed over the processors

by the spin of the target and the total orbital angular momentum and parity of

the (N + 1)-electron system.

• pstg3nx.f – reads the information from pstg2nx.f, forms the (N + 1)-electron

Hamiltonian matrices without exchange, and diagonalizes them to generate the

surface amplitudes and R-matrix poles. The diagonalization of the Hamiltonian

matrices is distributed over the various processors.

3.3. The Dirac R-matrix codes (DARC)

The Dirac R-matrix codes perform relativistic scattering calculations in the inner

region, but use a non-relativistic approximation in the asymptotic region. Our parallel

version of DARC allows us to employ our parallel diagonalization code (pstg3r.f) and

our parallel asymptotic code (pstgf.f) to complete a DARC calculation. A summary of

the recent changes made to the parallel DARC codes is given Appendix C. The target

states for a DARC run are generated using the code GRASP. Since many users of

the R-matrix codes are not as familiar with this code as they are with other structure

programs, our example of a DARC run will include input for GRASP.

• stg0d.f – converts bound-state orbital data output by GRASP into a format that

can be read by the scattering codes. It is very fast and has not been parallelized.

• stg1d orb.f – generates the orbital basis for the (N + 1)-electron continuum. It

is very fast and has not been parallelized.

• stg1d int.f – calculates the radial integrals. It is fast and has not been

parallelized.

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 7

• pstg2d.f – calculates the angular coefficients and forms the (N + 1)-electron

matrix elements. The calculations are distributed over the various processors by

JΠ partial wave.

• pdto3.f – The parallel version of the code dto3.f originally written by K. A.

Berrington, reads the (N + 1)-electron matrix elements generated by pstg2d.f

and writes them in a form that can be read by the parallel diagonalization code

pstg3r.f. The calculations are distributed over processor by JΠ partial wave.

3.4. Essential utility codes

There are currently dozens of utility codes used to manipulate or interrogate the large

binary passing files, or to extract information from output files. Below, we describe just

three utility codes that we believe are essential. The other utility programs are also

available; each contains a brief statement of its purpose, as well as a brief description

of its required input, as comments near the top of the program.

• arrange.f - pstgf.f writes collision strength files OMEGAXXX, where XXX

stands for a number from 000 up to a maximum of 999. Each file contains

collision strengths for a group of incident electron energies. However, in order to

achieve the best load balance between processors in pstgf.f, the energy points are

not written in monotonically increasing energy order. arrange.f creates a single

energy ordered file OMEGAZ from all OMEGAXXX files. Furthermore, if the

narrow resonances are not sufficiently resolved from a given run, it can be used to

interweave the collision strengths for extra energy points created in subsequent

runs. No input is required for this program.

• omadd.f - This utility code has two primary purposes:

– The first is to remove isolated numerical failures and/or unresolved

resonances from a large OMEGA file.

– The second is to add the values of the collision strengths from two OMEGA

files. For example, in a LS scattering calculation, when the LS/BP R-

matrix codes are used to determine the low partial-wave contributions with

exchange and the non-exchange codes are used to generate the high partial-

wave contributions, this program can be used to add the collision strengths

arising from the two runs. omadd.f interpolates the collision strengths from

the coarse energy mesh used with the non-exchange run onto the fine energy

mesh used in the exchange calculation and then adds the two sets of collision

strengths.

input variables for omadd.f are given at the top of the code.

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 8

• stgsig.f - it extracts collision strengths or calculates cross sections, as a function

of incident electron energy, for a set of specified transitions from the OMEGA

file. The input variables are explained at the top of the code.

4. Obtaining the codes

The programs summarized above, plus the Dirac structure code GRASP and a number

of other useful utility codes are available from the following two sites.

• Rollins College : http://vanadium.rollins.edu/codes

• Strathclyde University : http://amdpp.phys.strath.ac.uk/tamoc/code.html

4.1. Architectures and compilers

There are both serial and parallel versions of the R-matrix codes. The codes are

written in fortran with the parallelism implemented through the Message Passing

Interface (MPI). The current philosophy is that the serial codes should maintain their

fortran77 roots, and be capable of running on a linux box with the free GNU 77

compiler. However, the parallel codes described in the present document include

many fortran90 features in order to allow for increased efficiency and reduce memory

requirements. The parallel codes have been tested on a variety of parallel platforms,

but primarily on:

• An Opteron computer cluster with a Portland Group compiler.

• Two IBM SP series: (1) Seaborg at NERSC and (2) Cheetah at ORNL with IBM

compilers.

• An SGI ALtix parallel system with an Intel compiler.

4.2. Warnings

• You should NEVER mix other versions of these codes with the current release.

They may not be up-to-date on bug fixes and there may be inconsistencies in the

format employed in the passing files.

• NEVER mix serial and parallel runs within the same directory. There are

differences in the required passing files that can cause failures.

5. Compiling the codes

The compile examples will be restricted to the IBM SP and Opteron machines.

Examples of the compilation of the utility codes are not included here; these codes

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 9

are relatively simple and they all take no more than a few minutes to run, making

compiler flags unnecessary.

All programs except for the utility codes contain INCLUDE statements so that

dimensions can be specified in a separate file. The LS/BP inner-region codes (pstg1r.f,

pstg2r.f, pstg2.5.f, pstgjk.f, and pstg3r.f) require one PARAM file, the non-exchange

inner-region codes (stg1nx.f, pstg2nx.f, and pstg3nx.f) require a second PARAM file,

the inner-region DARC codes (stg1d orb.f, stg1d int.f, and pstg2d.f) require a third

PARAM file, pdto3.f requires the same PARAM files as the inner-region LS/BP codes,

and finally the asymptotic code pstgf.f requires a fourth PARAM file. The data in

these files set the dimensions of large arrays and ultimately the memory requirements

of the compiled codes; do not forget to include these files within the directory where

the corresponding programs are to be compiled. It is advised that you name the four

PARAM files as PARAM.bp, PARAM.nx, PARAM.darc, and PARAM.f and then

copy them to PARAM before compiling the appropriate codes. Sample PARAM files

are shown in Appendix D.

5.1. IBM SP series

For those who have run on the IBM SP series of machines, you may be familiar

with compilations using the 32 bit default implementation and the bmaxdata and

bmaxstack options. However, these are not recommended for compilation of the

parallel codes. With the implementation of a 64 bit MPI library, the bmaxdata

and bmaxstack options are no longer needed and continued use of them can lead to

such errors as segmentation faults. All IBM systems require the use of Loadleveler

to submit batch jobs. This will be illustrated in several of the examples covered in

Section 6.

5.1.1. LS/BP codes The codes use only MPI libraries to implement parallelism, but

these libraries have been bundled with codes that employ OPEN MP; therefore, one

must use mpxlf90 r instead of mpxlf90 for compilation on the IBM SP. Only pstg2r.f

and precupd.f require the library routines contained within stglib.f. The inner region

LS/BP codes should be compiled as follows:

• mpxlf90 r -qfixed=72 pstg1r.f -o pstg1r.x -O3 -q64 -qstrict

• mpxlf90 r -qfixed=72 pstg2r.f stglib.f -o pstg2r.x -O3 -q64

• mpxlf90 r -qfixed=72 pstg2.5.f -o pstg2.5.x -O3 -q64

• mpxlf90 r -qfixed=72 precupd.f stglib.f -o precupd.x -O3 -q64

pstg3r.f requires additional library linkage.

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 10

• At ORNL, the 64 bit MPI is implemented by the 64 bit switch (i.e., -q64):

– mpxlf90 r -qfixed=72 -lblas -L/usr/local/lib64 -lscalapack -lblacsF77init -

lblacs -lessl pstg3r.f -o pstg3r.x -O4 -q64

• At NERSC:

– 1. module add scalapack 64

– 2. mpxlf90 r -qfixed=72 pstg3r.f -o pstg3r.x $BLACS $PBLAS

$SCALAPACK -lessl -O4 -q64

Finally, the standard version of pstgf.f uses the accelerated routine DGEMM which can

have a large impact on speed. However, it requires that the Engineering and Scientific

Subroutine Library (essl) be linked in the compile statement as shown below:

• mpxlf90 r -qfixed=72 pstgf.f -o pstgf.x -O3 -q64 -lessl -qstrict

There is a version of pstgf.f without this option and it has been named pstgf.m2.f.

It can be compiled without the lessl library as follows:

• mpxlf90 r -qfixed=72 pstgf.m2.f -o pstgf.m2.x -O3 -q64 -qstrict

5.1.2. Non-exchange codes The non-exchange inner region codes should be compiled

with:

• xlf90 r -qfixed=72 stg1nx.f -o stg1nx.x -O3 -q64 -qstrict

• mpxlf90 r -qfixed=72 pstg2nx.f -o pstg2nx.x -O3 -q64

• At ORNL

– mpxlf90 r -qfixed=72 -lblas -L/usr/local/lib64 -lscalapack -lblacsF77init

-lblacs -lessl pstg3nx.f -o pstg3nx.x -O4 -q64

• At NERSC:

– 1. module add scalapack 64

– 2. mpxlf90 r -qfixed=72 pstg3nx.f -o pstg3nx.x $BLACS $PBLAS

$SCALAPACK -lessl -O4 -q64

5.1.3. DARC codes The Dirac structure code grasp.f and the DARC suite of inner

region codes should be compiled as follows:

• xlf90 r -qfixed=72 grasp.f lapackblas.f njgraf.f -o grasp.x -q64 -qstrict

• xlf90 r -qfixed=72 stg1d0.f -o stg1d0.x -q64 -qstrict

• xlf90 r -qfixed=72 stg1d orbs.f lapackblas.f -o stg1d orbs.x -q64 -qstrict

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 11

• xlf90 r -qfixed=72 stg1d ints.f -o stg1d ints.x -q64 -qstrict -O3

• mpxlf90 r -qfixed=72 pstg2d.f lapackblas.f -o pstg2d.x -qhot -q64

• mpxlf90 r -qfixed=72 pdto3.f -o pdto3.x -qhot -q64

Of course, pstg3r.f and pstgf.f are required for a full DARC run and they should be

compiled as shown on the previous page.

5.2. Beowulf Opteron Cluster : Portland Group compiler

The Rollins College Opteron cluster employs 64 bit processors. All these codes have

been tested on the Opteron using the Portland Group compiler. Other fortran90

compilers should work equally well, but will require testing.

5.2.1. LS/BP codes The LS/BP inner region codes should be compiled as follows.

• mpif90 pstg1r.f -o pstg1r.x -fast -Kieee

• mpif90 pstg2r.f stglib.f -o pstg2r.x -fast -Kieee

• mpif90 precupd.f stglib.f -o precupd.x -fast -Kieee

• mpif90 pstg2.5.f -o pstg2.5.x -fast -Kieee

pstg3r.f requires ScaLapack in conjunction with the ATLAS library versions of BLAS

and lapack.

• mpif90 -tp=k8-64 -Mcache align pstg3r.f -o pstg3r.x -L /opt/acml2.5.0/pgi64/lib

-lscalapack -lblacsF77init -lblacs -lacml -Kieee -fastsse

As mentioned above, the standard version of pstgf.f employs the accelerated routine

DGEMM which can have a large impact on speed. This version of the code is compiled

as:

• mpif90 pstgf.f -o pstgf.x -tp=k8-64 -Mcache align -L/opt/acml2.5.0/pgi64/lib -

lacml -fast -Kieee

pstgf.m2.f is the version of the code that does not employ this option and it can be

compiled more simply using the command

• mpif90 pstgf.m2.f -o pstgf.m2.x -fast -Kieee

5.2.2. Non-exchange codes The inner region non-exchange codes should be compiled

with :

• pgf90 stg1nx.f -o stg1nx.x -fast -Kieee

• mpif90 pstg2nx.f -o pstg2nx.x -fast -Kieee

• mpif90 -tp=k8-64 -Mcache align pstg3nx.f -o pstg3nx.x -L /opt/acml2.5.0/pgi64/lib

-lscalapack -lblacsF77init -lblacs -lacml -Kieee -fastsse

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 12

5.2.3. DARC codes The Dirac structure code grasp.f and the DARC suite of inner

region codes should be compiled as follows:

• pgf90 grasp.f lapackblas.f njgraf.f -o grasp.x

• pgf90 stg1d0.f -o stg1d0.x

• pgf90 stg1d orb.f lapackblas.f -o stg1d orb.x -fastsse

• pgf90 stg1d int.f -o stg1d int.x -fastsse

• mpif90 pstg2d.f lapackblas.f -o pstg2d.x -fastsse

• mpif90 pdto3.f -o pdto3.x -fast

Of course, pstg3r.f and pstgf.f are required for a full DARC run and they should be

compiled as shown above.

6. An LS R-matrix with pseudostates example: hydrogen

As an example, we will now consider an R-matrix with pseudo states (RMPS)

calculation for the excitation of hydrogen, run on the 26 processor Opteron cluster

at Rollins College. Before a scattering calculation can begin, one must generate the

target states. In general, these orbitals may be determined using atomic structure

packages such as AUTOSTRUCTURE, MCHF, or CIV3. In this case, we used

AUTOSTRUCTURE (available at amdpp.phys.strath.ac.uk/autos/) to generate both

the spectroscopic states and the Laguerre pseudo states used in this RMPS calculation.

These orbitals are written to a formatted file called radial that is required by the

scattering codes. The flow chart for the LS/BP exchange codes for an LS-coupling

R-matrix calculation such as this RMPS calculation for H is shown in figure 1.

6.1. pstg1r.f

The only input file required by pstg1r.f, other than radial, is dstg1. The dstg1 file

for this run is shown below:

——————————————————————————

S.S. H RMPS Calculation

&STG1A ISMITN=1 /

&STG1B MAXLA=5 MAXLT=13 MAXC=75 MAXE=6 NMIN=5 NMAX=12

LMIN=0 LMAX=5 /

——————————————————————————

Note that we have employed a forward slash to end the namelist input. This works

with both the IBM and Portland Group compilers. However, with some compilers,

one must employ &END to complete namelist input. Also note that the only required

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 13

Outer Region

INPUT

das/dauto

dstg1

dstg2

dstg3

dstgf

OUTPUT

STG1.DAT

RKXXX.DAT

 LS coupling R−matrix (exchange) flowchart

 pstg1r

 pstg2r

 pstg3r

 pstgf

AUTOSTRUCTURE

H.DAT

STG2HXXX.DAT

radial

sizeH.dat

OMEGA

Figure 1. Flowchart of the LS R-matrix inner-region codes. The output files in

green are binary files and the ones in red are formatted files. Note that there is

an option to print the OMEGA file as a binary file, rather than a formatted file.

input on the first line is S.S., which indicates that the target states are to be read in

as numerical orbitals from radial in SUPERSTRUCTURE format (STO is used for

CIV3 target-state input). The remainder of the first line can be used to identify the

run.

• ISMITN = 1, Indicates that a pseudostate calculation is being carried out.

Pseudostates are being used to represent the high Rydberg states and the target

continuum.

• MAXLA = maximum value of the total angular momentum for the target terms

(in this case we have included spectroscopic and pseudo states up to L = 5).

• MAXLT = maximum value of the total angular momentum of (N+1)-electron

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 14

system (in this case we are doing a full exchange calculation for all partial waves

up to L = 13).

• MAXC = maximum number of the (N +1)-electron continuum basis orbitals per

angular momentum.

• MAXE (optional) if specified, is the maximum scattering energy in rydbergs for

your problem. If the MAXC you have specified is too small for this MAXE, an

estimate of the value required is printed and execution halts.

In general, for a given MAXC, the maximum scattering energy for which accurate

collision strengths can be calculated is approximately half the maximum eigen-energy

of the continuum basis orbitals. However, for a number of cases, we have made

calculations at higher energies than this without serious problems. However, if this

is done, the collision strengths should be monitored carefully at high energies for

oscillations.

The variables NMIN, NMAX, LMIN, LMAX are used only in a calculation that

includes target pseudostates:

• NMIN = minimum n value for the pseudostates.

• NMAX = maximum n value for the pseudostates.

• LMIN = minimum l value for the pseudostates.

• LMAX = maximum l value for the pseudostates.

In this calculation, we are employing Laguerre pseudostates from 5s to 12g to repre-

sent the high Rydberg states and the target continuum.

pstg1r.f is executed on 16 processors on the Opteron cluster using the command:

—————————————————————————

nohup time mpirun -np 16 pstg1r.x &

—————————————————————————

Since the code is being run in the background, we have used the nohup command so

that the system will write information regarding the run to the output file nohup.out.

The time command also writes timing information to the nohup.out file.

6.2. pstg2r.f

Other than the passing files, the only required input deck for pstg2r.f is dstg2. The

dstg2 file for this run is shown on the next page.

———————————————————————————–

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 15

S.S. H RMPS Calculation

&STG2A ISORT=1 /

&STG2B MAXORB=57 NELC=1 NAST=57 INAST=0 MINLT=0 MAXLT=13

MINST=1 MAXST=3 /

1 0 2 0 2 1 3 0 3 1 3 2 4 0 4 1 4 2 4 3 5 0 5 1 5 2 5 3 5 4

6 0 6 1 6 2 6 3 6 4 6 5 7 0 7 1 7 2 7 3 7 4 7 5 8 0 8 1 8 2

8 3 8 4 8 5 9 0 9 1 9 2 9 3 9 4 9 5 10 0 10 1 10 2 10 3 10 4 10 5

11 0 11 1 11 2 11 3 11 4 11 5 12 0 12 1 12 2 12 3 12 4 12 5

1

0 0

0 0 0 0 0 0 0 0 0 0 0

1 1

1 1 1 1 1 1 1 1 1 1 1

1 0

0 0 0 0 0 0 0 0 0 0 0 1

2 0 0

2 0 0

2 1 1

2 0 0

. . . skipping terms

2 5 1

1

0 0

0 0 0 0 0 0 0 0 0 0 0

2 2

2 2 2 2 2 2 2 2 2 2 2

2 0

0 0 0 0 0 0 0 0 0 0 0 2

————————————————————————————

Again, in the first card, only S.S. is required. The rest of the line can be used to

identify the run

• ISORT = 1 causes the code to consider all N-electron terms of the same SLΠ

symmetry together, regardless of the order in which they are input. This improves

the efficiency of the angular algebra calculations. However, it assumes that the

number of terms to be included in the close-coupling expansion of target is equal

to the number of all possible terms derived from the listed configurations. If

ISORT = 0, then one can specify any number of terms to be included in the

close-coupling expansion of the target, up to the maximum number of possible

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 16

terms; however, for maximum efficiency it is then better to group them by SLΠ.

• MAXORB = number of orbitals that will be used to define the target

configurations.

• NELC = number of target electrons.

• NAST = number of terms to be included in the close-coupling expansion of the

target.

• INAST = number of (N + 1)-electron SLΠ symmetries to be included in the

calculation. If INAST = 0, then the code generates all possible (N +1)-electron

SLΠ symmetries internally according to the ranges specified by MINLT, MAXLT,

MINST, and MAXST below. If INAST is not equal to zero, then the INAST

symmetries must be entered explicitly at the end of the input file in the form

2S + 1 L Π, where Π = 0 for even parity and Π = 1 for odd parity.

• MINLT = minimum value of L.

• MAXLT = maximum value of L.

• MINST = minimum value of 2S + 1.

• MAXST = maximum value of 2S + 1.

Following all namelist input, one enters the following data in free-format form:

• The nl values for all target orbitals, including any pseudo-orbitals. In this case,

we are including spectroscopic and pseudo-orbitals from 1s to 12h.

• The number of base configurations from which all N -electron configurations are

to be generated.

• The minimum occupation numbers for all N -electron configurations.

• The maximum occupation numbers for all N -electron configurations.

• A list of base configurations from which all N -electron configurations can be

specified. The last number in this list is the maximum number of promotions

from the base configuration to be allowed within the constraints specified by the

minimum and maximum occupation numbers. For this simple case, the code will

generate all configurations from 1s to 12h. For more complex cases, it is safer to

input all configurations explicitly, each one with zero promotions. An example of

this is shown later.

• A list of target terms in the form: 2S + 1 L Π. There must be NAST terms in

this list.

• The number of base configurations from which all (N +1)-electron configurations

are to be generated.

• The minimum occupation numbers for all (N + 1)-electron configurations.

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 17

• The maximum occupation numbers for all (N + 1)-electron configurations.

• A list of base configurations from which all (N + 1)-electron configurations can

be specified. The last number in this list is the maximum number of promotions

from the base configuration to be allowed within the constraints specified by the

minimum and maximum occupation numbers. For this simple case, the code will

generate 1s2 plus all possible configurations resulting from the promotion of one

or two electrons out of 1s2. For more complex cases, it is safer to input all (N +1)-

electron configurations explicitly, each one with zero promotions. An example of

this is shown later.

The (N + 1)-electron configurations are required to compensate for the enforced

orthogonality between the continuum orbitals and the bound orbitals. You should

include those (N + 1)-electron configurations that arise from adding any of the target

orbitals (spectroscopic or pseudo) to any N -electron configuration. However, if your

list of N -electron terms does not include all those that are possible from the specified

N -electron configurations, this procedure will lead to the inclusion pseudo-resonances.

The programs pstg2r.f and pstg3r.f include options designed to eliminate these pseudo

resonances, but they will not be discussed here.

One might think that there are 56 partial waves for this run (4 × 14); however,

the two partial waves 1S and 3S with odd parity are not possible, leaving only 54.

Thus, we ran pstg2r.f on 18 processors on the Opteron, so that the calculations for

three partial waves would be carried out on each processor. The command for this

run is:

—————————————————————————

nohup time mpirun -np 18 pstg2r.x &

—————————————————————————

6.3. pstg3r.f

Along with the STG2HXXX.DAT binary passing files, pstg2r.f generates the format-

ted file sizeH.dat. For each SLΠ partial wave, this file contains three numbers: the

number of free scattering channels, the size of the (N + 1)-electron matrix without

those elements arising from the (N + 1)-electron bound terms, and the total size of

the (N + 1)-electron matrix. It is used to allocate the minimum amount of space for

each Hamiltonian matrix. Other than these passing files, the only required input deck

for pstg3r.f is dstg3. The dstg3 file for this run is shown on the next page.

—————————————————————————–

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 18

S.S. 57-term RMPS calculation of H ion

&STG3A /

&STG3B NAST=57 /

&matrixdat nb=32 nprow=5 npcol=5 /

0.000000 0.750000 0.888889 0.937500 0.960573 0.981468 1.018174 1.083642 1.214352

1.505481 2.428459 8.041553 0.750001 0.888890 0.937501 0.960654 0.981962 1.019091

1.083473 1.207405 1.463618 2.165713 5.151632 0.888891 0.937501 0.960688 0.982028

1.018493 1.079881 1.192569 1.411896 1.946720 3.811242 0.937501 0.960733 0.982331

1.018776 1.079221 1.185666 1.384806 1.829872 3.190563 0.960740 0.982465 1.019866

1.082874 1.190142 1.385829 1.795323 2.932692 0.982475 1.026724 1.103171 1.231934

1.460278 1.916327 3.088840

—————————————————————————–

S.S. is the only required input on the first line of this file – all the rest is used for

identification only.

• NAST = 0 (default) causes no energy adjustment of the theoretical term energies.

If NAST > 0, then the code expects the user to input energies in rydbergs

following the last namelist input for each of the terms specified in dstg2 and

in the order in which they were read in dstg2, unless ISORT=1 (as in this

hydrogen example) in which case they are grouped together by symmetry and

each symmetry is in the same order in which it first appeared in the dstg2 input.

The code adjusts the diagonal elements of the continuum-continuum part of the

(N + 1)-electron Hamiltonian by the differences between the input energies and

the theoretical energies. This is normally used to adjust the theoretical values to

the experimental values; however, here it is being used to remove the degeneracy

between energies in the spectroscopic terms in hydrogen, since these can cause

errors in the calculation.

• NB = Global column block size for partitioning the global Hamiltonian matrix.

When the majority of matrices in the calculation are less than size 10,000, then a

value of 16 is advisable. When the largest matrices range in size between 10,000

and 35,000 a value of 32 should be used, and for even larger cases it might be set

equal to 64. However, a value of 32 has been found to work with a wide variety

of matrix sizes.

• NPROW & NPCOL = variables used to determine the dimensions of the local

Hamiltonian matrix distributed to each processor. NPROW*NPCOL must

equal the total number of processors and the code runs more efficiently

when NPROW = NPCOL.

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 19

The run command for pstg3r.f on 25 Opteron processors is as follows:

—————————————————————————

nohup time mpirun -np 25 pstg3r.x &

—————————————————————————

This concludes the inner-region exchange calculation. The input files and the

NX1.DAT, NX2.DAT, and H.DAT output files should be saved. To save disk space,

all other passing files can be deleted. The files NX1.DAT, NX2.DAT and dstg3 files

need to copied into a separate directory in which the non-exchange calculation is to

be carried out.

6.4. the non-exchange run: pstg1nx.f, pstg2nx.f and pstg3nx.f

The flow chart for a non-exchange calculation is shown in figure 2. With the exception

of dstg3, which is needed for pstg3nx.f, and the two passing files NX1.DAT and

NX2.DAT from the exchange runs, the only additional input file needed for the non-

exchange runs is dstgnx. The dstgnx file for this case is shown below:

—————————————————————————-

CONTinuation of RMPS calculation of H

&STGNX MINLT=14 MAXLT=60 /

—————————————————————————-

The only part of the first line of this file that is required is the first four letters CONT,

indicating this non-exchange run is a continuation of the exchange run. The rest of

the line is used for identifying the run.

• MINLT= minimum angular momentum for the non-exchange calculation. For

LS-coupling calculations, it is invariably MAXLT from the exchange calculation

plus one.

• MAXLT = maximum angular momentum for the non-exchange calculation.

The simplicity of the non-exchange input results from the fact that dstgnx is used

for pstg1nx.f , pstg2nx.f and pstg3nx.f. These codes are run in 1, 2, 3 order. Be sure

to keep the H.DAT file resulting from the non-exchange run in a directory separate

from the H.DAT resulting from the exchange run.

6.5. Outer region run: pstgf.f

In general one would want to do four pstgf.f runs – two for the exchange calculation

and two for the non-exchange calculation. The first run for the exchange calculation

would attempt to resolve the resonance structure by employing a very fine energy

mesh over the energy region of the spectroscopic thresholds. The second run for the

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 20

Outer Region

dstgf

H.DAT

dstgnx

dstgnx

dstgnx

 : NX2.DAT
 : dstg3

ANG1.DAT

ANG2.DAT

ANG2.DAT

STG2HXXX.DAT

1. Required files : NX1.DAT

stg1nx

 pstg3nx

 pstg2nx

These files should be present before commencing

pstgf

sizeNX.dat

OMEGA

an non−exchange calculation.

 LS−coupling nonexchange R−matrix flowchart

Figure 2. Flowchart of the LS-coupling non-exchange R-matrix inner region

codes. The output files in green are binary and the ones in red are formatted.

exchange calculation would employ a much coarser mesh over the energy range above

the highest spectroscopic threshold. Both of the non-exchange runs would normally

use a relatively coarse energy mesh; however, it is still useful to divide these runs in

two in order that the lower energy one is sufficiently fine to pick up the spectroscopic

thresholds. Other than the H.DAT file, the only input file needed is dstgf. The dstgf

file for H in the low-energy resonance region that was used in conjunction with the

H.DAT file from the exchange calculation is shown on the next page.

——————————————————————————————————–

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 21

&STGF IMESH=1 IQDT=0 PERT=’YES’ MAXLT=13 LRGLAM=-13 IPRINT=-2

IBIGE=0 /

&MESH1 MXE=1000 E0=0.7499 EINCR=2.5035e-04 /

——————————————————————————————————–

• IQDT controls the nature of the outer region calculation.

IQDT = 0 is the default and is used to specify the standard pstgf.f operation.

IQDT = 1 specifies the Multi-channel Quantum Defect Theory (MQDT)

operation via the use of unphysical S-matrices.

IQDT = 2 specifies the MQDT operation via the use of unphysical K-matrices.

All examples shown in the present document use only the default option.

• IMESH defines the type of energy mesh and subsequent namelist to be read.

IMESH = 1, constant spacing in energy dE.

IMESH = 2, constant spacing in effective quantum number dn.

IMESH = 3, an arbitrary set of user-supplied energies.

• PERT Determines if the long-range multipoles are included perturbatively in the

solution to the scattering problem in the asymptotic region.

PERT = ’NO’, neglect long-range coupling potentials (fast operation).

PERT = ’YES’, include long-range coupling potentials (factor 5-10 slower). Even

though it requires much more time, we would recommend that PERT always be

set to YES. Neglecting these long-range multipoles can have a large effect on the

collision strengths, even for high partial waves.

• LRGLAM Determines if top up is to be included in the collision strengths.

LRGLAM >= 0 is the maximum L-value for an LS calculation, or maximum

value of 2*J for a BP calculation – partial wave sum will be topped-up in order

to estimate the contributions to the collision strengths for partial waves from

LRGLAM+1 to infinity.

LRGLAM < 0 (default) No top-up.

In the hydrogen case, we would set LRGLAM negative for the exchange runs, but

equal to 60 for the non-exchange runs, so that the high partial-wave contributions

would include an estimate for the partial waves with L > 60.

• IBIGE determines if infinite-energy limits are determined for dipole-allowed

transitions.

IBIGE = 0, default, no limits are calculated

IBIGE = 1, append Bethe infinite-energy scaled collision strengths to the file

OMEGA. (There is now an option in AUTOSTRUCTURE that allows for the

generation of infinite-energy scaled collision strengths for dipole and non-dipole

transitions, and this is normally used instead of generating only the dipole-allowed

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 22

values from pstgf.f)

• IPRINT defines the print level, -2 is lowest level and +3 the highest.

• IOPT1 Option to allow for a reduced number of partial waves.

IOPT1 = 1 is the default, and all SLΠ partial waves are included.

IOPT1 = 2 specify partial waves in the form, 2S + 1 L Π (or 0 2J Π for a

BP calculation) after the last namelist input. The list of partial waves must be

terminated with -1 -1 -1.

• MXE = the number of energy mesh points.

• E0 = the first energy point in scaled energy units.

• EINCR = the energy increment in scaled energy units.

Note that by scaled energy units, we mean the energy of the incident electron

relative to the ground state in rydbergs/(Z-N)2. The code pstgf.f is used for both

exchange and non-exchange calculations. However, as mentioned previously, the non-

exchange calculation should have substantially fewer energy points. It is also very

important to note that pstgf.f requires that the total number of energy points

should be divisible by the number of processors. The run command for pstgf.f

on 25 Opteron processors is shown below

—————————————————————————

nohup time mpirun -np 25 pstgf.x &

—————————————————————————

Once a pstgf.f calculation has been completed, numerous OMEGAXXX files will

be present within the directory. Running the utility program arrange.f (no input

file needed) will generate a single OMEGAZ file, containing energy-ordered collision

strengths for every possible transition.

6.6. The utility code: omadd.f

The utility code omadd.f may now be used to remove isolated numerical failures, run

tests for unresolved resonances, and add collision strengths for the high partial waves

from the non-exchange run to the collision strengths from the lower partial waves

determined from the exchange run. A sample input file (dadd) for omadd.f used to

remove isolated numerical failures in the OMEGA file that was generated from the

exchange run in the resonance region is shown below:

————————————————————

&SADD YMULT=1000.0 /

————————————————————

One first copies the OMEGA file to be processed into omadd1. After omadd.f is

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 23

run, the processed collision strengths appear in omaddt. The YMULT option causes

the code to search through the data in the OMEGA file and examine the collision

strengths in groups at three consecutive energy points; should the collision strength

for the middle point differ in magnitude from collision strengths at the points on either

side by a factor of YMULT or more, then the middle point is removed and replaced

by a collision strength determined from the average of the collision strengths on either

side. It is unclear exactly what value of YMULT one should use to eliminate numerical

failures without removing important physics, but a value of 1000 appears fairly safe

in the resonance region. For an OMEGA file containing collision strengths in the high

energy region above all thresholds, or for an OMEGA file with only collision strengths

for high partial waves, there are no physical resonances; in such cases, a value much

closer to one such as 1.2 is appropriate.

One can also employ the YMULT option to test for unresolved resonances. For

example, one could copy the OMEGA file run in the resonance region after it has been

processed with a YMULT value of 1000 into omadd1 and then run omadd.f with a

YMULT value of 5 or 10. By comparing the collision strengths from the two files one

can arrive at some conclusions regarding the effects from unresolved resonances and

perhaps decide whether or not a finer energy mesh is needed.

After filtering the OMEGA files in the low and high energy regions from both the

exchange and non-exchange calculations, the next step is to merge these files. There

are a number of ways to do this, but perhaps the easiest way is to copy the low-energy

OMEGA file into OMEGA000 and the high energy one into OMEGA001 and then

run arrange.f −− OMEGAZ will then contain the merged files.

omadd.f can finally be used to add the contributions from the lower partial waves

from the exchange run with those for the higher partial waves from the non-exchange

run. This is done by copying the OMEGA file from the exchange run into omadd1

and the OMEGA file from the non-exchange run into omadd2. For this case, the

dadd file should not include a value for YMULT. The code assumes that the data in

omadd2 are on a coarser energy mesh than those in omadd1. It then interpolates the

collision strengths from omadd2 onto the mesh used in omadd1 and adds the collision

strengths. The output data on the energy mesh employed in omadd1 is written into

omaddt.

6.7. The utility code: stgsig.f

Once the final file has been generated, one would normally want to determine the

collision strengths or cross sections as a function of incident electron energy. The

utility code stgsig.f is designed to do this. It also has a number of options for doing

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 24

such things as adding cross sections for various transitions and generating reduced

cross sections as a function of reduced energy, but those will not be discussed here.

Suppose,we wish to generate the excitation cross sections for all transitions from

1s → 2s to 1s → 3d in Mb (10−18 cm2) as a function of energy in eV over an energy

range from 0 to 50 eV. The dstgsig input file for such a run with stgsig.f is shown

below:

——————————————————————————

&stgsig ntran=-5 ntrmn=1 units=13.606 isgunt=0 emn=0. emx=50. ic=0 /

——————————————————————————

• ntran - final transition for which collision strengths or cross sections are to be

output. It should be emphasized that this denotes the final transition number

and not the final term. The minus sign indicates that cross sections will be

displayed, whereas a postive number would return collision strengths.

• nast - the initial transition for which collision strengths or cross sections are to

be output.

• units - energy units: 1.0 for Rydbergs and 13.606 for eV (default).

• isgunt - units for cross sections: isgunt = 0 for 10−18 cm2 (default); isgunt = 1

for 10−16 cm2; isgunt = 2 for πa2
0; isgunt = 3 for a2

0; and isgunt = -1 for 10−21

cm2.

• emn - minimum energy of the incident electron in units.

• emx - maximum energy of the incident electron in units.

• ic - coupling; 0 for an LS coupling OMEGA file (default) ; 1 for an intermediate

coupling BP or DARC OMEGA file.

The output is written to the file sg.dat.

7. Breit-Pauli calculations

7.1. Introduction

We suggest that you consider the following steps in running a BP calculation. The

first step is necessary only when the dimensions set in the PARAM file must be very

accurate to allow the executables to run on machines with a limited amount of memory

for each processor.

• Run the first two stages pstg1r.f and pstg2r.f on one processor. In the dstg1 file,

the MAXC parameter determining the span of your continuum basis should be set

very low; e,g., 4-5. Then, within the STG2B namelist in the dstg2 input file set set

NOICC = 1 (Number Of Intermediate Coupling Channels); this will produce an

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 25

Figure 3. The file ICCOUT used to check the DIMENSIONS in precupd.f

output file ICCOUT, which gives the values of the minimum dimensions required

for the BP run. (A sample ICCOUT file is shown in figure 3.) This allows one

who is using a machine with limited memory per processor to edit the PARAM

file accordingly and create the smallest possible executable.

• Having specified the values in the PARAM file (perhaps using the information

in the ICCOUT file) and compiling the inner region LS/BP codes, return to

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 26

the dstg1 file, and set the MAXC parameter to a realistic value. The parameter

RELOP must be set to RELOP = ’YES’ in order for pstg1r.f to calculate the

mass-velocity, Darwin, and spin-orbit integrals needed in a BP calculation.

• On completion of pstg1r.f there should be a number of RKXXX.DAT files of nearly

equal size. The next step is to run pstg2r.f. In the dstg2 file, be sure that the

NOICC flag is now removed and the RELOP parameter is set to RELOP=’YES’

within the STG2A namelist. Ideally, it is best to run a single SLΠ partial wave

per processor, but if this is not possible, try to divide the number of partial waves

as evenly as possible among the available processors.

• Next you will run pstg2.5.f to create a set of files containing information on the

LS (N + 1)-electron matrix elements that are required for a particular range of

JΠ partial waves. There are two input variables for pstg2.5.f and precupd.f that

need explaining. The variables J2MIN and J2MAX specify the minimum and

maximum values of 2×J and the total number of partial waves will be (J2MAX-

J2MIN+2). Ideally, one should run one JΠ partial wave per processor; however,

if this is not feasible, the total number of partial waves must be exactly

divisible by the number of processors. Also note that both pstg2.5.f

and precupd.f must be run with the same number of processors.

• both pstg2.5.f and precupd.f read the input deck dstgjk. After you have

completed running pstg2.5.f, you will have a substantial number of large passing

files. The RKXXX.DAT files produced by pstg1r.f and the STG2HXXX.DAT

files produced by pstg2r.f can now be removed.

• After you have completed precupd.f you can remove the STG2HJXXX files. All

the JΠ partial waves will be listed in ascending order within the sizeBP.dat file.

Although one would normally want to run pstg3r.f to diagnonalize the (N + 1)

matrices for all these partial waves, under certain circumstances you may wish

to run pstg3r.f for a subset of partial waves. This can be done by creating a new

sizeBP.dat with the partial waves to be run and renaming the RECUPHXXX

files appropriately.

A flow diagram for a parallel BP R-matrix run is shown in figure 4. In this

diagram, it is assumed that the target structure has been generated using the program

AUTOSTRUCTURE.

7.2. A Breit-Pauli example : Fe14+

We will now consider a BP calculation on Fe14+ using the IBM SP computer at

NERSC; it uses the batch processing queue system Loadleveler to manage jobs. This

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 27

AUTOSTRUCTURE
INPUT

das/dauto

dstgf

OUTPUT

dstg1

dstg2

dstgjk

dstgjk STG2HJXXX

STG1.DAT

RKXXX.DAT

STG2HXXX.DAT

Outer Region

 pstg1r

pstg2r

pstg2.5

precupd

pstgf

pstg3r H.DAT dstg3

RECUPHXXX

Breit−Pauli R−matrix flowchart

radial

sizeBP.dat

OMEGA

Figure 4. Flowchart of parallel R-matrix inner-region codes; the green output

files are binary and red ones are formatted files

will be demonstrated with some sample batch scripts. The dstg1 input file for the

pstg1r.f run is shown below. With the exception of the RELOP command that signifies

a BP run, it is quite similar to the dstg1 file shown in the last section.

————————————————————

S.S. 25 term, 45-level BP calculation for Fe14+

&STG1A RELOP=’YES’ /

&STG1B MAXLA=4 MAXLT=15 MAXE=300 MAXC=25 /

————————————————————

In this case, we wish to generate all JΠ partial waves up to a J = 13.5. This requires

us to generate all SLΠ partial waves up to an L = 15; thus, MAXLT = 15.

A batch script for running pstg1r.f on the IBM-SP is shown below. These batch

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 28

jobs are submitted to the available queues with the command ’llsubmit scriptfile-

name’, where the class and wall clock limit parameters determine the queue in which

the job will be run. We made the pstg1r.f run on one node of the IBM-SP using

16 processors. Details regarding the Loadleveler commands are given on the NERSC

Web site.

—————————————————————-

#!/usr/bin/csh

#@ job name = pstg1r

#@ output = pstg1r.out

#@ error = pstg1r.error

#@ job type = parallel

#@ network.MPI = csss,not shared,us

#@ notification = never

#@ class = regular

#@ node = 1 !! 16 processors

#@ total tasks = 16

#@ wall clock limit = 00:30:00 !! 30 minutes

#@ queue

setenv TMPDIR $SCRATCH

cd /scratch/scratchdirs/cball/fe14+bp

pwd

poe ./pstg1r.x -procs 16 -nodes 1

——————————————————————

The commands ’llq -u username’ and ’llcancel job id’ are useful to monitor or cancel

jobs in the batch queue.

The input file dstg2 for the pstg2r.f run for Fe14+ is given below:

————————————————————

S.S. 25 term, 45-level BP calculation for Fe14+

&STG2A RELOP=’YES’ /

&STG2B MAXORB=9 NELC=12 NAST=25 INAST=0 MINLT=0 MAXLT=15

MINST=2 MAXST=4 /

1 0 2 0 2 1 3 0 3 1 3 2 4 0 4 1 4 2 ! nl orbitals

9 ! 9 N-electron configurations explicitly written out

2 2 6 0 0 0 0 0 0 ! min electron occupation of a shell

2 2 6 2 2 2 1 1 1 ! max electron occupation of a shell

2 2 6 2 0 0 0 0 0 0

2 2 6 1 1 0 0 0 0 0

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 29

2 2 6 0 2 0 0 0 0 0

2 2 6 1 0 1 0 0 0 0

2 2 6 0 0 2 0 0 0 0

2 2 6 1 0 0 1 0 0 0

2 2 6 1 0 0 0 1 0 0

2 2 6 1 0 0 0 0 1 0

2 2 6 0 1 1 0 0 0 0

1 0 0

1 0 0

1 0 0

1 0 0

3 1 1

3 1 1

3 1 1

1 1 1

1 1 1

1 1 1

1 2 0

1 2 0

1 2 0

1 2 0

3 1 0

3 1 0

3 2 0

3 2 0

3 3 1

1 2 1

3 2 1

1 3 1

3 3 0

1 4 0

3 0 0

33 ! 33 (N+1)-electron configurations explicitly written out

2 2 6 0 0 0 0 0 0 ! min electron occupation of a shell

2 2 6 2 3 3 2 2 2 ! max electron occupation of a shell

2 2 6 2 1 0 0 0 0 0

2 2 6 2 0 1 0 0 0 0

2 2 6 2 0 0 1 0 0 0

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 30

2 2 6 2 0 0 0 1 0 0

2 2 6 2 0 0 0 0 1 0

2 2 6 1 2 0 0 0 0 0

2 2 6 1 1 1 0 0 0 0

2 2 6 1 1 0 1 0 0 0

2 2 6 1 1 0 0 1 0 0

2 2 6 1 1 0 0 0 1 0

2 2 6 0 3 0 0 0 0 0

2 2 6 0 2 1 0 0 0 0

2 2 6 0 2 0 1 0 0 0

2 2 6 0 2 0 0 1 0 0

2 2 6 0 2 0 0 0 1 0

2 2 6 1 0 2 0 0 0 0

2 2 6 1 0 1 1 0 0 0

2 2 6 1 0 1 0 1 0 0

2 2 6 1 0 1 0 0 1 0

2 2 6 0 1 2 0 0 0 0

2 2 6 0 1 1 1 0 0 0

2 2 6 0 1 1 0 1 0 0

2 2 6 0 1 1 0 0 1 0

2 2 6 0 0 3 0 0 0 0

2 2 6 0 0 2 1 0 0 0

2 2 6 0 0 2 0 1 0 0

2 2 6 0 0 2 0 0 1 0

2 2 6 1 0 0 2 0 0 0

2 2 6 1 0 0 1 1 0 0

2 2 6 1 0 0 1 0 1 0

2 2 6 1 0 0 0 2 0 0

2 2 6 1 0 0 0 1 1 0

2 2 6 1 0 0 0 0 2 0

————————————————————

Note that unlike our RMPS calculation for H, we are now specifying the N -electron

and (N + 1)-electron configurations explicitly, and therefore, the number of promo-

tions for each configuration is set to zero. Since there are 64 SLΠ partial waves, we

ran pstg2r.f on 64 processors. The batch script for this run is shown on the next page.

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 31

—————————————————————-

#!/usr/bin/csh

#@ job name = pstg2r

#@ output = pstg2r.out

#@ error = pstg2r.error

#@ job type = parallel

#@ network.MPI = csss,not shared,us

#@ notification = never

#@ class = regular

#@ node = 4 !! 64 processors

#@ total tasks = 64

#@ wall clock limit = 00:30:00 !! 30 minutes

#@ queue

setenv TMPDIR $SCRATCH

cd /scratch/scratchdirs/cball/fe14+bp

pwd

poe ./pstg2r.x -procs 64 -nodes 4

——————————————————————

Once the pstg2r.f run has been completed and the STG2HXXX.DAT files have

been generated, we are ready to run pstg2.5.f to organize the SLΠ partial-wave

information in the files STG2HJXXX files for a precupd.f run. As mentioned above,

pstg2.5.f and precupd.f both use the input file dstgjk. The dstgjk file for this Fe14+

run is shown below. Since we wish to generate JΠ partial waves from J = 0.5 to

J = 13.5, J2MIN is set to 1 and J2MAX is set to 27. The total number of partial

waves will be 28. Thus we made our pstg2.5.f run using 28 processors.

————————————————————

S.S. 25 term, 45-level BP calculation for Fe14+

&STGJA RELOP=’YES’ /

&STGJB JNAST=45 IJNAST=0 J2MIN=1 J2MAX=27 /

0 0

0 1

2 1

4 1

2 1

0 0

4 0

4 0

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 32

0 0

2 0

4 0

6 0

4 0

4 1

6 1

4 1

8 1

2 1

4 1

6 1

0 1

2 1

4 1

6 1

2 1

4 0

6 0

8 0

4 0

0 0

4 0

2 0

8 0

0 0

2 0

0 0

0 1

2 1

4 1

2 1

2 0

4 0

6 0

4 0

————————————————————

In this input file:

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 33

• JNAST = number of target levels, specified as 2 × J Π after the namelist.

• IJNAST = number of JΠ partial waves. By setting IJNAST = 0, the code will

generate all possible partial waves from J2MIN to J2MAX.

• J2MIN = minimum total value of 2 × J (provided IJNAST=0)

• J2MAX = maximum total value of 2 × J (provided IJNAST=0)

The batch script for the pstg2.5.f run on 28 processors (2 nodes) on the IBM-SP is

shown below:

—————————————————————-

#!/usr/bin/csh

#@ job name = pstg2.5

#@ output = pstg2.5.out

#@ error = pstg2.5.error

#@ job type = parallel

#@ network.MPI = csss,not shared,us

#@ notification = never

#@ class = regular

#@ node = 2 !! 28 processors

#@ total tasks = 28

#@ wall clock limit = 00:30:00 !! 30 minutes

#@ queue

setenv TMPDIR $SCRATCH

cd /scratch/scratchdirs/cball/fe14+bp

pwd

poe ./pstg2.5.x -procs 28 -nodes 2

——————————————————————

Once pstg2.5.f has been run and the STG2HJXXX files have been generated,

precupd.f is run using the identical dstgjk input file. The batch script for the precupd.f

run is the same as the one above, except the code name pstg2.5.f would be changed to

precupd.f. Remember that precupd.f must be run on the same number of processors

as pstg2.5.f

The program precupd.f produces a formatted file sizeBP.dat. For each JΠ partial

wave, it lists three quantities: the number of free scattering channels, the size of the

(N +1)-electron Hamiltonian matrix without those elements arising from the (N +1)-

electron bound levels, and the total size of the (N + 1)-electron Hamiltonian matrix.

Along with the binary RECUPHXXX files, this file must be present, when pstg3r.f is

run; it is used to allocate the minimum amount of space for each Hamiltonian matrix.

The dstg3 input deck for the pstg3r.f run is shown below:

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 34

——————————————————————

S.S. 25 term, 45-level BP calculation for Fe14+

&STG3A /

&STG3B INAST=0 NAST=0 /

&MATRIXDAT NB=32 NPROW=8 NPCOL=8 /

——————————————————————

In this run, we are not making any adjustments to the theoretical energies. However, if

such adjustments were desired, one would set NAST to the number of levels included

in the close-coupling expansion of the N-electron target and the adjusted energies

would be entered following the last namelist input line. The order of these energies

would now be determined by the order of the levels in the dstgjk input file.

Since we have set NPROW×NPCOL = 64, pstg3r.f must be run on 64 processors.

The batch script for this run is shown below:

—————————————————————-

#!/usr/bin/csh

#@ job name = pstg3r

#@ output = pstg3r.out

#@ error = pstg3r.error

#@ job type = parallel

#@ network.MPI = csss,not shared,us

#@ notification = never

#@ class = regular

#@ node = 4 !! 64 processors

#@ total tasks = 64

#@ wall clock limit = 01:00:00 !! 1 hour

#@ queue

setenv TMPDIR $SCRATCH

cd /scratch/scratchdirs/cball/fe14+bp

pwd

poe ./pstg3r.x -procs 64 -nodes 4

——————————————————————

There are no differences in the dstgf input file for this BP pstgf.f run than the one

shown for the LS-coupling H run in the last section, with the exception that MAXLT

and LRGLAM now refer to 2 × J rather than L.

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 35

8. Dirac Atomic R-Matrix Code Calculations

8.1. Introduction

As mentioned above, our version of the inner-region Dirac Atomic R-matrix Code

(DARC) allows us to employ pstg3r.f and pstgf.f to carry out the diagonalization

of the (N + 1)-electron matrix and solve the scattering problem in the asymptotic

region, respectively. This required the development of a new code pdto3.f and some

modifications of pstg3r.f and pstgf.f to handle the quantum numbers that describe

each channel for a relativistic calculation. As with an LS or Breit-Pauli R-matrix

calculation, the accuracy of a DARC calculation depends significantly on the quality

of the N -electron target states. The DARC codes assume that the target orbitals have

been generated using the GRASP code of Ian Grant et al . The version of GRASP

that we have employed for this purpose is GRASP0 and it is available along with the

original serial version of DARC at http : //web.am.qub.ac.uk/DARC/

8.2. A DARC example: Fe14+

It is not our purpose here to give complete instructions for the use of GRASP and

DARC, since they are available at the Web address given above; rather, here we will

only provide the input files used to make a DARC run for Fe14+ using our parallel

version of the DARC package. As we go along, we will highlight the parallel features

that we have implemented.

The input file GRASP.INP associated with with the program grasp0.f to gen-

erate the relativistic target states for a 45-level DARC calculation for Fe14+ is shown

below. The code allows one to specify the non-relativistic orbitals (in this case, 1s, 2s,

2p, 3s, 3p, 3d, 4s, 4p, and 4d) and the non-relativistic configurations (in this case, 3s2,

3s3p, 3s3d, 3p2, 3p3d, 4s2, 4s4p, and 4s4d) to internally generate all the corresponding

relativistic orbitals and configurations.

———————————————————————–

Orbitals for a 45-level DARC calculation on Fe14+

9 9 ! NMAN, NWM

1S 2 2 2 2 2 2 2 2 2

2S 2 2 2 2 2 2 2 2 2

2P 6 6 6 6 6 6 6 6 6

3S 2 1 1 0 0 0 1 1 1

3P 0 1 0 2 1 0 0 0 0

3D 0 0 1 0 1 2 0 0 0

4S 0 0 0 0 0 0 1 0 0

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 36

4P 0 0 0 0 0 0 0 1 0

4D 0 0 0 0 0 0 0 0 1

ANG 7 10

-1 ! all poss J Π

MCP

MCT 1 -1 -1 ! E1 only

MCBP 0

MCDF

0 0 0 ! initial orbitals are generated internally

26

EAL 3

BENA 16

OSCL 9 10 11

STOP

———————————————————————–

The GRASP code has an extremely wide range of options, and before running this

program, one should carefully study the GRASP manual. This minimal input file is

only provided for illustrative purposes.

After GRASP has been run and the target orbitals written to the file

ORBITALS.DAT, one must run the interactive program stg1d0.f to generate the

file TARGET.INP, which contains the Dirac two-component (large and small) radial

wavefunctions in a format that can be read by DARC. It is a stand alone code with

no input deck required, and the user need only input the variant of GRASP that is

being used. In this case we entered 1, since that corresponds to the grasp0.f version

that we are using.

In figure 5 is shown a flow diagram for a typical GRASP/DARC run using our

suite of parallel DARC codes as well as pstg3r.f and pstgf.f.

We first note that unlike the LS/BP R-matrix program pstg1r.f, the tasks of

generating the continuum orbitals and calculating the radial integrals have been sepa-

rated into two programs within DARC. After the orbital file TARGET.INP has been

generated, we are ready to run the program stg1d orb.f to calculate the (N + 1)

continuum orbitals. It reads the input deck ORBS.INP, and the orbital file TAR-

GET.INP. The file ORBS.INP that we employed for our Fe14+ run is shown on the

next page. Here we use the same number of basis functions to represent the (N + 1)-

electron continuum as we employed in our BP calculation for Fe14+ (NRANG2 = 25).

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 37

dstgf

Outer Region

 DARC R−matrix (exchange) flowchart

GRASP.INP

INPUT

parallelised codes

dstg3

INTEGRAL.DAT

DSTG1.DAT

OUTPUT

dstgdto3

DSTG2.INP

MCDF.DAT

 stg1d_orb

 stg1d0

 grasp
0

 stg1d_int

 pstg2d

 pstgf

 pdto3

 pstg3r

RECUPHXXX

H.DAT

DSTG2.XXX

ORBS.INP

INTS.INP

TARGET.INP

sizeBP.dat

OMEGA

Figure 5. Flowchart of the GRASP and the DARC R-matrix inner region codes.

The codes that have been parallelized, including pstg3r.f and pstgf.f are shown in

yellow. The binary output files are in green and the formatted output files in red.

————————————————————

title : 45-level DARC calculation for Fe 14+

&ORBS MINNQN = 1 2 2 3 3 MAXNQN = 4 4 4 4 4 MAXFUL = 2 2 2 2 2

KBMAX=5 KCMAX=37 NRANG2=25 NZ=26 NELC=12 /

————————————————————

stg1d.f runs for all but the largest cases in about a minute.

Next we run stg1d int.f to calculate all one and two electron integrals and then

write them to the binary file INTEGRAL.DAT. Considering the substantial increase

in the number of integrals over the LS/BP case this code runs very efficiently and has

not yet been parallelized. Only a minimal amount of information is required in the

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 38

input deck INTS.INP as illustrated below:

————————————————————

title : 45-level DARC calculation for Fe 14+

&INTS LAMBB = 2 /

————————————————————

The next step is to run the code pstg2d.f in order to calculate the angular coeffi-

cients and form the (N +1)-electron matrix elements. This code has been parallelised

over the JΠ partial waves. Ideally, the input file dstgdto3 for the code pdto3.f is

present (a sample of this is shown below where we discuss running pdto3.f); if so,

it informs pstg2d.f of the number of JΠ partial waves used in advance through the

namelist variable INAST. Otherwise, pstg2d.f must read the input deck DSTG2.INP

repeatedly to ensure that each processor is positioned correctly to read only those JΠ

partial waves it is calculating. Multiple DSTG2.XXX files are produced, and the JΠ

partial waves are distributed as evenly as possible among the available processors.

The DSTG2.INP input deck for this Fe14+ run is shown below:

————————————————————

title : 45-level DARC calculation for Fe XV

&DSTG2 NMAN=9 NWM=9 /

&ORB PRINC=1 KAPPA=-1 /

&ORB PRINC=2 KAPPA=-1 /

&ORB PRINC=2 KAPPA=-2 /

&ORB PRINC=3 KAPPA=-1 CSF= 2 1 1 1 1 1 0 0 0 /

&ORB PRINC=3 KAPPA=-2 CSF= 0 1 0 0 0 0 2 1 0 /

&ORB PRINC=3 KAPPA=-3 CSF= 0 0 1 0 0 0 0 1 2 /

&ORB PRINC=4 KAPPA=-1 CSF= 0 0 0 1 0 0 0 0 0 /

&ORB PRINC=4 KAPPA=-2 CSF= 0 0 0 0 1 0 0 0 0 /

&ORB PRINC=4 KAPPA=-3 CSF= 0 0 0 0 0 1 0 0 0 /

&ANGOPT /

&JVALUE /

&SYM JTOT=0.5 NPTY=1 /

&SYM JTOT=0.5 NPTY=-1 /

&SYM JTOT=1.5 NPTY=1 /

&SYM JTOT=1.5 NPTY=-1 /

&SYM JTOT=2.5 NPTY=1 /

&SYM JTOT=2.5 NPTY=-1 /

&SYM JTOT=3.5 NPTY=1 /

&SYM JTOT=3.5 NPTY=-1 /

&SYM JTOT=4.5 NPTY=1 /

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 39

&SYM JTOT=4.5 NPTY=-1 /

&SYM JTOT=5.5 NPTY=1 /

&SYM JTOT=5.5 NPTY=-1 /

&SYM JTOT=6.5 NPTY=1 /

&SYM JTOT=6.5 NPTY=-1 /

. . . skipping a few

&SYM JTOT=13.5 NPTY=1 /

&SYM JTOT=13.5 NPTY=-1 /

————————————————————

After the pstg2d.f run has been completed, one must run the program pdto3.f.

This is a newly developed utility code originally written by Prof Keith Berrington.

For each JΠ symmetry, it reads the (N + 1)-electron matrix elements that have been

written to the files DSTG2.XXX, and writes them to the files RECUPHXXX that

can be read by pstg3r.f. The input deck dstgdto3 for the code pdto3.f has the single

variable INAST, which corresponds to the total number of symmetries listed in the

input deck DSTG2.INP. In the serial version of this code, the total number of sym-

metries is input interactively. However, for the parallel implementation, it is better

to enter this information using an input file. The number of partial waves contained

within each RECUPHXXX file is equal to the number of partial waves DSTG2.XXX

files. The program pdto3.f is also responsible for the creation of the sizeBP.dat file,

which has an identical function to one used in the BP run. The input deck dstgdto3

for this run is shown below:

—————————————————————

&DTO3SYM INAST=28 /

—————————————————————

After completing the pdto3.f stage, one then uses to pstg3r.f and pstgf.f to

diagonalize the (N+1)-electron matrices and solve the asymptotic part of the problem,

respectively. The input for these two parallel runs is identical to that of a BP run.

References

[1] Berrington K A, Eissner W B and Norrington P H 1995 Comput. Phys. Commun. 92 290

[2] Burke V M, Burke P G and Scott N S 1992 Comput. Phys. Commun. 69 76

[3] Norrington P H 2004 http://www.am.qub.ac.uk/DARC

[4] Chen G, Pradhan A K and Eissner W, 2003 J. Phys. B 36 453

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 40

Appendix A : LS/Breit-Pauli Parallel R-Matrix Programs

• pstg1r.f - The bound-continuum and continuum-continuum integrals are

distributed across the processors and each processor writes its own RKXXX.DAT

file. Since the bound-continuum and continuum-continuum integrals dominate the

execution time, the scaling is almost perfect; however, this type of parallelization

requires the mapping of integrals within individual RKXXX.DAT files to their

global position within the standard RK.DAT file – this is done in pstg2r.f.

• pstg2r.f - The calculations are distributed over the SLΠ partial waves by

processor. Each processor writes a STG2HXXX.DAT file. There is no

communication between processors. However, the efficiency of this code depends

on the speed of communications between the mounted disk drive (where the

RKXXX.DAT direct access files are stored) and the individual processors. On

large supercomputers it is more efficient to run every SLΠ symmetry concurrently

with one partial wave per processor; however, on smaller clusters with slower

communications with the mounted disk drive, it is often more efficient to reduce

the number of processors and run more partial waves on each processor.

• pstg2.5.f - This is a new code, which groups the SLΠ symmetries that contribute

to a particular range of JΠ symmetries into a single binary STG2HJXXX file on

a particular processor. Ideally, every JΠ symmetry should be calculated with

one partial wave per processor. However, moderately large scale calculations can

still be done on a local cluster, by grouping ranges of JΠ symmetries on a single

processor.

• precupd.f/pstgjk.f - The transformations of the (N + 1)-electron matrix

elements from pure LS coupling to intermediate coupling that are performed in

this code are distributed by ranges of JΠ partial waves over the processors. Each

processor writes a file RECUPHXXX file. In addition, the code determines the

sizes of the Hamiltonian matrices for each symmetry and writes this information to

a file sizeBP.dat; it is used to allocate the memory required for the construction

and diagonalization of the (N + 1)-electron Hamiltonian matrix within pstg3r.f.

• pstg3r.f - The parallel version of the matrix diagonalization code has been

changed in several ways from its serial counterpart.

– The parallel coding of pstg3r.f requires it to access matrix size information

at the beginning of each run. Thus, for an LS run, in addition to

multiple STG2HXXX.DAT files, the file sizeH.dat generated by pstg2r.f

must be present. Similarly, for a BP or DARC run, in addition to multiple

RECUPHXXX files, the file sizeBP.dat must be present.

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 41

– All MPI broadcasting of the (N + 1)-electron Hamiltonian matrix elements

has been removed, as this was very slow for large cases. Each processor now

reads these matrix elements directly from the STG2HXXX.DAT files in an

LS case, and from the RECUPHXXX files for a BP case.

– When the matrix size exceeds
√

231 (∼ 46, 340), the indices which map a

large Hamiltonian array into upper half of a symmetric matrix, exceed the

integer*4 limit. Therefore the mapping subroutines ijton, ntoij, locH and

TAPERD had to be upgraded to integer*8. The mapping functions have

also been simplified.

– A new method to form the surface amplitudes after the matrix

diagonalization has been implemented. For large cases, the MPI command

that was being used to send partial surface amplitudes to node 0 was

completely overwhelming the communication system on even large massively

parallel machines. Each processor now performs a partial sum of the surface

amplitudes and sends that information to node zero, where the sum is

completed.

– The diagonalization routine PDSEYVX that was previously employed in

some early versions of pstg3r.f (and also pstg3nx.f) has been phased

out. This diagonalization routine should never be used since it only

enforces orthogonality between the eigenvectors calculated on a particular

processor. Therefore, with increased number of processors, the accuracy of

the orthogonalization deteriorates.

Appendix B : Parallel Non-Exchange R-Matrix Programs

Work has been completed on the elimination of the major bottlenecks in the parallel

non-exchange codes pstg2nx.f and pstg3nx.f.

• stg1nx.f - There is no parallelization required as the code executes in seconds.

• pstg2nx.f - The parallelization over the L and Π of the (N + 1)-electron system

and the spin S of the N -electron target. On massively parallel architectures,

the scaling of pstg2nx.f is favorable due to faster communication between the

processors and the mounted disk. However, due to the slower communication

between the mounted disk and the processors on small clusters, peak performance

is achieved using between 8 and 12 processors.

– the array U(I,J) now has the correct index order required for the fastest

calculation of the radial integrals in subroutine RK.

– There are two options to divide the L values over the processors: (1) If

MINLT and MAXLT variables only are present in the namelist, then the

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 42

range of L values is split as evenly as possible over the processors. If not

divisible exactly, then the greatest range of L values is assigned to the partial

waves with the highest L values. (2) With the second option an integer array

namelist variable IWAVE is used to specifically control the distribution of the

ranges of L values. This is useful because the (N + 1)-electron continuum

basis decreases as L increases; therefore it may be as fast to make calculations

in the range L = 45 − 50 as for L = 10. This is explained in greater detail

within the code – it is not the default option.

– pstg2nx.f creates the file sizeNX.dat file listing the range of L values carried

out on each processor. This file must be present when pstg3nx.f is run.

• pstg3nx - Only minor changes were required to read in the multiple radial

integral files: RAD1.DATXXX, RAD2.DATXXX, RAD3.DATXXX. All MPI

broadcasting of the (N + 1)-electron matrix elements has been removed. Each

processor now reads the angular coefficients and radial integrals; then using

scratch files for temporary storage, the (N + 1)-electron matrix elements are

constructed. This code is slower than the exchange version (pstg3r.f) due to the

increased computation needed to form the Hamiltonian matrix from the angular

coefficients and radial integrals.

Appendix C : The Parallel DARC Suite of R-Matrix Programs

• stg1d orbs.f - There is no parallelization required as the code executes in seconds.

• stg1d ints.f - No parallelization was necessary; however, the integration subroutine

INTRD2 has been made more efficient. The benefits are proportional to the size

of NRANG2, and therefore, the number of times the above subroutine is called.

• pstg2d.f - This code was parallelized over the JΠ (N + 1)-electron symmetries.

– The order of the indexing was corrected in the formation of the Hamiltonian

matrix in subroutines CMAT and CMATX

– The efficiency of the extraction of electrostatic radial integrals from the

array RKSTO in the subroutine FINCC has been improved. In addition,

symmetry relationships have been employed to improve the speed of the

matrix multiplies in this subroutine. These improvements had a significant

effect since this subroutine is called many times.

• pdto3.f : This code reads the multiple passing files DSTG2.XXX, which contain

the (N + 1)-electron matrix elements and writes them to the RECUPHXXX files

in a form that can be read by pstg3r.f.

• pstg3r.f - This program was modified to allow it to work with the DARC codes. It

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 43

distinguishes between a DARC calculation from a BP calculation by detecting a

negative value of the variable LRANG2, which is communicated from the earlier

codes using the passing files RECUPHXXX.

• pstgf.f - This program was also modified to allow it to work with a DARC

calculation.

Appendix D : Sample PARAM Files

Shown below are sample PARAM files for the LS/BP inner-region codes, the non-

exchange inner-region codes, the inner-region DARC codes, and the outer-region

pstgf.f code.

Figure 6. An example of a PARAM file for the inner-region LS/BP codes

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 44

Figure 7. An example of a PARAM file for the inner-region non-exchange codes

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 45

Figure 8. An example of a PARAM file for the inner-region DARC codes

Users Manual for the Parallel LS/Breit-Pauli/DARC R-Matrix Programs 46

Figure 9. An example ot a PARAM file for the outer region pstgf.f code

